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Abstract. Five samples from a 56 m long drill core that was recovered from the 

lacustrine Sangkarewang oil shale have been studied by means of petrography 

and organic geochemistry in order to investigate the organic matter composition 

and depositional environment of the shale. The organic matter consisted of 

abundant lamalginite (30%, v/v) and a very limited amount of vitrinite, 

suggesting an aquatic depositional environment with minor terrestrial influence. 

Organic geochemical analysis exhibited the dominance of pristane, phytane, and 

generally n-alkane compounds. These compounds may have originated mostly 

from aquatic photosynthetic organisms. The oil shale was likely deposited in an 

anoxic lake environment as suggested by the presence of framboidal pyrite (6%, 

v/v) and preserved organic matter with a total organic carbon (TOC) percentage 

of about 4.9%. The pristane/phytane ratio was relatively high (about 3.9) and 

thought to be source sensitive rather than redox sensitive. Hopanoid and aryl 

isoprenoid compounds were present in minor amounts. The latter compounds are 

interpreted to be derived from green sulfur bacteria dwelling in an anoxic 

environment with the presence of H2S in bottom water. 

Keywords: depositional environment; Ombilin Basin; organic geochemistry; organic 

petrology; Sangkarewang oil shale. 

1 Introduction 

Oil shales are defined as organic-rich shales containing significant amounts of 

oil-prone kerogen and liberating crude oil upon heating [1]. Some authors 

regard oil shales not only as shales but also as marls and carbonates with 

varying proportions of clay minerals, quartz and feldspars [2]. Oil shales consist 

of a diverse composition of organic matter, reflecting a wide range of 

sedimentary environments. The rock contains more than 5% of organic content 

and can be benefited as alternative source for fossil fuels by retorting [2]. 
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In recent years, oil shales have been of interest in Indonesia as they are expected 

to greatly increase the oil resources [3]. Some drilling programs have been 

performed during the last decade to map geological features relating to the 

occurrence of oil shales in order to explore and make inventory of its resources 

throughout the Indonesian basins, among which the Ombilin Basin. Several 

studies have also been performed to assess the possibility of utilizing the oil 

shales. 

The Sangkarewang Formation is known as a strata bearing lacustrine organic-

rich rock in the Ombilin Basin deposited during the Paleogene. Some studies 

have been carried out in order to investigate the geological framework and 

petroleum system [4-8]. However, these studies dealt only with general 

geological approaches such as geological mapping, petrography, palynology, 

and mineralogy. The organic geochemistry of Indonesian oil shales has never 

been reported in detail. 

This study characterizes the organic matter composition of the Sangkarewang 

oil shale by means of organic petrology and geochemistry. Macerals and 

compounds that compose the organic matter of the oil shale will be identified 

and investigated with respect to their origin and paleoenvironment. The results 

were expected to provide improvement of the Sangkarewang depositional 

settings interpretation. 

2 Geological Settings 

The Ombilin Basin is a Tertiary intramontane basin located in the Barisan 

Mountains on Sumatra Island, Indonesia (Figure 1). It is a graben-like, pull-

apart structure resulting from early Tertiary tensional tectonics related to strike-

slip movement along the Sumatra Fault Zone [5]. 

The Ombilin Basin is surrounded by permo-carboniferous slates, phyllites, 

marble, limestone (Kuantan Formation), and large intrusions of granitic rock to 

the north, east, and south. A complex assemblage of pre-Tertiary rocks is also 

exposed along the western margin of the basin [5]. The stratigraphy of the 

Ombilin Basin according to Koesoemadinata and Matasak [4] and de Smet and 

Barber [9] is shown in Figure 2. It can be described as follows: 

a. The Brani Formation is a sequence of purple-brown coloured breccias and 

polymictic pebble to cobble conglomerates with a muddy to sandy matrix, 

very poorly sorted, generally non-bedded to occasionally poorly bedded, 

formed partly as alluvial fan and partly as coastal deposits. 

b. The Sangkarewang Formation is composed of dark bluish grey to black fine 

laminated shales. The shales are typically plastic and papery and are locally 
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calcareous but contain carbonaceous material with mica, pyrite, and plant 

remains. There are a few inter-bedded greenish-grey feldspathic turbidite 

sandstones with a thickness of less than 1 m. The shales were deposited in a 

lacustrine environment. 
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Figure 1 Ombilin Basin and tectonic settings of Sumatra (modified from 

Koesoemadinata and Matasak [4] and Koning [5]). 
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c. The Sawahlunto Formation consists of a sequence of brownish shales, silty 

shales, and siltstones and inter-bedded brown, dense, quartz sandstones and 

is characterized by the presence of coal. The shales are usually 

carbonaceous or coaly and act as underclays. This formation is considered 

to be a flood basin and meandering river deposit. 

d. The Sawahtambang Formation consists of a thick massive sequence of 

cross-bedded sandstones, mostly quartzose to feldspathic. 

e. The Ombilin Formation is characterized by dark grey carbonaceous and 

calcareous shales. 
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Figure 2 Stratigraphic column of the Ombilin Basin (modified from 

Koesoemadinata and Matasak [4] and de Smet and Barber [9]). 

The study area is located in Talawi, where the Sangkarewang Formation is well 

exposed (Figure 1). The Sangkarewang Formation is well known due to the 

fossil finds of fresh water fish. It was deposited in a stable lacustrine 

environment with euxinic conditions, possibly a large lake covering at least 
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1000 km
2
. In petroleum geology, the Sangkarewang Formation is interesting as 

it consists of a massive and nearly mature oil shale [8]. 

3 Materials and Methods 

3.1 Materials 

Five samples were taken from a 56 m long WL-2 drill core recovered from the 

Sangkarewang Formation, which is available at the depository sample house of 

the Center of Geological Resources (PSDG), Bandung, Indonesia. Grab 

sampling was applied at five points distributed along the core, as shown in 

Figure 3. The core consisted typically of fine-grained laminated oil shale with a 

hard papery structure, dark brown color, and plant remains found in some parts. 

Breccia and some thin layers of sandstone were present in some parts of the 

profile. 

Breccia, coarse quartz

grained with shally matrix,

greyish white, very hard.

Sandstone, fine

grained, grey, hard.

Laminated oil shale, fine

grained, dark brown, hard,

plant remain in parts.
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Figure 3 Profile of WL-2 drill core of Sangkarewang Formation and sampling 

points. 
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3.2 Methods 

3.2.1 Petrographic Analysis 

Sample preparation and analysis procedures for the petrographic analysis 

followed those described by Taylor, et al. [10]. Oil shale particles of about 1 

mm in size were prepared for polished sections. The particles were embedded in 

a silicon mould using epoxy resin as embedding medium. The samples were 

then ground and polished. Microscopic analysis was performed with a Zeiss 

Axio Imager A2m reflected-light microscope to identify and quantify macerals 

in the oil shale. At least 300 points were counted for macerals and minerals. The 

mean random vitrinite reflectance was measured on the surface of vitrinite 

particles under oil immersion on the microscope. About twenty-five points of 

vitrinite reflectance were measured on each sample. Maceral composition was 

analyzed in the Laboratory of Mining Exploration, Bandung Institute of 

Technology, while the reflectance measurement was conducted in the 

Laboratory of Physics, Center of Geological Resources, Bandung, Indonesia. 

3.2.2 Geochemical Analysis 

Total organic carbon contents (TOC) measurement was performed using a Euro 

EA (CAP 20) Elemental Analyzer. Before the analysis, pulverized samples with 

less than 200 micron grain size were treated with diluted (10%) hydrochloric 

acid to remove carbonates and then rinsed with distilled water until neutrality. 

In view of calcite loss, the TOC values were corrected to the original sample 

weight. 

Gas chromatography-mass spectrometry (GC-MS) measurement was carried out 

in order to investigate the organic compounds existing in the oil shale. Twenty-

five grams of pulverized oil shale sample material (<200 micron) was extracted 

for 24 hours in a soxhlet extraction apparatus using 200 ml dichloromethane 

(DCM) as solvent. The extract was analyzed using a Thermo Scientific Ultra 

series gas chromatograph coupled to a Thermo Scientific DSQ II mass 

spectrometer. GC separation of the compounds was achieved using a Thermo 

Scientific TR-5MS fused silica capillary column (30 m x 0.25 mm ID x 0.25 

µm film thickness). The oven temperature was programmed from 60 to 320 °C 

at a rate of 4 °C /min, with a 35 min isothermal period at 320 °C. The samples 

were injected in the splitless mode with the injector temperature at 280°C. 

Helium was used as carrier gas. The mass spectrometer was operated in the 

electron impact mode (EI) at 70 eV ionization energy. Mass spectra were 

obtained by scanning from 50 to 600 Daltons at a cycle time of 1 second. Per-

deuteratedtetracosane was used as internal standard for quantification. GC-MS 
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analysis was done in the Institute of Atmospheric and Environmental Sciences, 

Goethe University, Frankfurt am Main, Germany. 

4 Results 

4.1 Petrographic Analysis 

The results of the petrographic analysis of the five samples show that the 

macerals composing the Ombilin oil shale are alginite, vitrinite, and resinite. 

Alginite is the most abundant maceral, accounting for about 30% (v/v) of the oil 

shale (Table 1). It consists mostly of lamalginite, while telalginite is present 

only in a very limited amount. Lamalginite exhibits a lamellar structure that is 

interlayered by minerals. Photomicrographs of the macerals and minerals are 

shown in Figure 4. 

Vitrinite and resinite are minor components, about 4% (v/v) and less than 1% 

(v/v), respectively. Vitrinite is present as small grains, rarely dispersed in the 

samples. Dark coatings and holes are sometimes observed in the vitrinite debris. 

Vitrinite reflectance (Rr) measurement values ranged from 0.43 to 0.51% with 

an average value of 0.46%. 

Minerals account for about 65% (v/v) of the oil shale. The minerals consist 

mostly of calcite and clay minerals and commonly pyrite. Pyrite is present in a 

minor amount, averaging at 6% (v/v). It mostly shows a framboidal structure. 

Table 1 Results of the petrographic and geochemical analyses. 

Parameter 
Average 

Value 
Unit 

Alginite (mostly lamalginite) 30 % (v/v) 

Vitrinite 4 % (v/v) 

Resinite <1 % (v/v) 

Minerals (incl. pyrite) 65 % (v/v) 

Pyrite 6 % (v/v) 

Rr 0.46 % 

Carbonates 55 % 

TOC 4.9 % 

Pristane 991.7 g/g TOC 

Phytane 266.5 g/g TOC 

Pristane/Phytane 3.9  

C17n-alkane 635.2 g/g TOC 

C27n-alkane 403.6 g/g TOC 

CPI 1.2  
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Figure 4 Photomicrographs of the Sangkarewang oil shale in oil immersion: 

lamalginite (L) shows a lamellar structure, vitrinite (V) present as small grains, 

pyrite (P) typically exhibiting framboidal structure, calcite (C) found throughout 

the polished sections, and fish remains (F) sometimes observed in the samples. 

The scale bars indicate 50 µm of length. P1 was taken under fluorescence 

illumination. 

Table 2 Peak assignment of compounds shown in Figure 5. 

Peak Compound Base Peak Mass Weight 

Pr Pristane 57 268 

Ph Phytane 57 282 

Std Internal standard   

1 C13 Aryl isoprenoid 133 176 

2 C14 Aryl isoprenoid 133 190 

a 17 (H)-22,29,30-Trisnorhopane 191 370 

b 17(H)-22,29,30-Trisnorhopane 149 370 

c 17(H),21(H)-30-Norhopane 191 398 

d 17(H),21(H)-Hopane 191 410 

e 22R-17(H),21(H)-Homohopane 191 426 
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4.2 Geochemical Analysis 

The total organic carbon (TOC) contents of the raw samples are 4.9% on 

average (Table 1). The values are relatively low as compared to the organic 

carbon content of common economic oil shales (>10%) [9]. The carbonate 

contents measured as weight loss after acid treatment are very high, averaging 

at 55% of the raw samples. This analysis result suggests that the samples being 

studied represent a calcareous shale of the Sangkarewang Formation. 

The chromatogram of a representative sample total organic extract is shown in 

Figure 5. The n-alkane compounds, marked by dots in the figure, are dominant 

in all samples. Pristane is the most abundant compound in all samples 

(averaging at 991.7 g/g TOC), whereas phytane is much lower than pristane 

(averaging at 266.5 g/g TOC). The pristane/phytane (Pr/Ph) ratio averages at 

3.9. Mass fragmentograms for m/z 133 and m/z 191 of the total extract are also 

shown in Figure 5, indicating the presence of aryl isoprenoids and hopanoids, 

respectively. Peak assignment for the compounds is listed in Table 2. 

The n-alkanes in the samples range from C14 to C35, showing odd over even 

predominance in all samples (Figure 5). The compounds exhibit bimodal 

distribution, peaking at C17 and C27. The C27 is the most abundant compound of 

the n-alkanes, averaging at 635.2 g/g TOC. Of the short-chain n-alkanes, C17 is 

the most abundant, with an average value of 403.6 g/g TOC. The carbon 

preference index (CPI) based on Bray and Evans [11] was calculated for C24-C33 

n-alkanes. The CPI values are similar for the five samples; the values range 

from 1.13 to 1.36, averaging at 1.21. The higher CPI values (more than 1.0) 

reflect an odd over even predominance of the long-chain n-alkanes. 

The presence of C13 and C14 aryl isoprenoids (compounds 1 and 2) is indicative 

of a depositional environment. The identification of these compounds refers to 

the mass spectra published by Requejo, et al. [12]. Aryl isoprenoids occur only 

in trace amounts; the peaks were identified from mass fragmentogram of m/z 

133 (Figure 5). 

Hopanoid homologues also occur in very low amounts. Some of C27, C29, C30, 

and C31 hopanoid peaks could be identified in the mass fragmentogram of m/z 

191 (Figure 5). Other compounds in the hopanoid homologues may be present 

in very limited amounts but could not be observed. 
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Figure 5 Mass chromatogram of total extract of representative sample (WL-

089) for total ion (TIC), m/z 133, and m/z 191. Dots denote n-alkane peaks. 
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5 Discussion 

5.1 Organic Matter Origin 

According to the petrographic analyses, the organic matter is mostly composed 

of lamalginite. Macerals are commonly derived from microalgae with thin 

cellular wall and bacteria [13]. The organisms, due to a weak or absent cellular 

wall, most probably decayed easily during deposition and diagenesis. This 

results in the absence of a clear structure and morphology of the lamalginite 

maceral. Vitrinite and resinite are two recognized components which originate 

from higher plants. 

Organic geochemical analyses reveal the predominance of n-alkanes in the total 

extract of the Ombilin oil shale. n-Alkanes in oil shale are commonly derived 

from various sources. Short-chain n-alkanes (C15-C19) showing odd over even 

predominance are typically derived from algae and photosynthetic bacteria 

[14,15]. Long-chain n-alkanes (>C24) commonly originate from epicuticular 

waxy coatings of vascular plants and some green and blue-green algae [14-17]. 

In the present case, the short-chain n-alkanes most likely were derived from 

algae and/or photosynthetic bacteria, while the long-chain n-alkanes may have 

been generated by green and/or blue green algae. In the latter, vascular plants 

are less significant due to less contribution of terrestrial sources, as evidenced 

by the limited amounts of terrestrial-derived macerals. 

Pristane and phytane are ubiquitous in sediments. These compounds have 

various biological sources. The common origin of pristane and phytane are 

phytyl side chains of chlorophyll a in photosynthetic organisms and 

bacteriochlorophyll a and b in purple sulfur bacteria [15,18]. In the Ombilin oil 

shale it is unlikely that pristane and phytane were generated from 

photosynthetic higher plants, as vitrinite maceral in the organic matter is very 

limited. Algae and photosynthetic bacteria are proposed as the organisms most 

responsible for the occurrence of pristane and phytane. 

Algae with thick cellular walls are unlikely as the main precursors of Ombilin 

oil shale organic matter, because such organisms will derive structured alginite 

or telalginite maceral. In the Ombilin oil shale, telalginite occurs only in very 

limited amounts. Microalgae and bacteria are thus suggested as the principal 

biological precursors of the lamalginite maceral as well as the n-alkane 

compounds, pristane, and phytane. Additionally, the presence of hopanoid 

compounds support the explanation that bacteria were an important source of 

the organic matter. Although the compounds occur only in low abundance, it is 

likely that most of the compounds have been converted into n-alkanes during 



 Depositional Environment of the Sangkarewang Oil Shale 431 
 

late diagenesis. The vitrinite reflectance is about 0.46%, indicating nearly 

mature organic matter. 

Aryl isoprenoids are cleavage products of isorenieratene. In the Ombilin oil 

shale, the carotenoids could not be recognized in the GC-MS analysis. It is 

probable that all carotenoids have been mostly converted to other compounds, 

including aryl isoprenoids, during late diagenesis. Carotenoids in oil shale may 

originate from some biological sources, including algae, carotenogenic 

actinobacteria and green sulfur bacteria [19,20,21]. All these organisms can 

dwell in a freshwater environment, so they may partly be responsible for the 

presence of aryl isoprenoids in Ombilin oil shale. 

5.2  Depositional Environment 

The predominance of lamalginite in the organic matter and the very limited 

amount of higher plant macerals, such as vitrinite and resinite, strictly indicate 

aquatic depositional settings for the Ombilin oil shale. The vitrinite is thought to 

originate from terrestrial higher plants sources, not from aquatic higher plants, 

by the presence of dark coatings and holes, which represent weathering parts 

during material transportation. The deposition environment may be relatively 

deep, as the vitrinite has been transported longer and present in limited amounts. 

Deep depositional environments promoted the establishment of anoxic bottom 

water of many ancient lakes [1,22], including most likely Ombilin lake. The 

existence of anoxic bottom water during deposition of the Sangkarewang oil 

shale is evidenced by the occurrence of framboidal pyrite observed in the 

petrographic analysis. Framboidal pyrite is only derived in anoxic 

environments, as the agent bacteria require such conditions [23]. 

Koesoemadinata and Matasak [4] also reported that the Sangkarewang 

Formation was deposited in a deep anoxic-euxinic environment. 

Anoxic bottom water provides good conditions for preservation of organic 

matter, as anaerobic degradation is thermodynamically less efficient than 

aerobic degradation [1]. Deep anoxic environments in the former Ombilin lake 

may have been responsible for the preservation of organic matter in the 

Sangkarewang oil shale. 

The pristane/phytane ratio (Pr/Ph) is commonly used to infer anoxicity of 

depositional environment [15]. Anoxic environments lead to reduction of phytyl 

side chains to phytol and then to phytane, so that the Pr/Ph will be low. On the 

other hand, oxic environments lead to oxidation of phytol to pristane, so the 

Pr/Ph will be high. In the Ombilin oil shale, the Pr/Ph is relatively high (about 

3.9), suggesting an oxic depositional environment. The high Pr/Ph is in contrast 
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with the presence of framboidal pyrite, which is only deposited in strictly 

anoxic depositional environments. 

Pristane and phytane could also be derived other than from phytyl side chains of 

chlorophyl a. These compounds could have been generated from archaebacterial 

membrane lipids [24]. Additionally, pristane may also originate from 

tocopherols [25] and methyltrimethyltridecylchromans (MTTC) [26]. 

Considering the various sources of pristane and phytane, Rontani, et al. [27] 

have suggested that Pr/Ph as redox indicator should be applied with care, 

because the results are not always reliable. Hence, it is proposed that the high 

Pr/Ph in the Ombilin oil shale is source dependent rather than redox sensitive. 

The occurrence of aryl isoprenoids is interesting. The carotenoid derivatives 

may be indicative for the presence of green sulfur bacteria as the biological 

source [19]. Green sulfur bacteria require sulfur (H2S) and light for 

photosynthesis. In aquatic systems, the presence of H2S is restricted only to 

anoxic bottom water. Hence, the aryl isoprenoids in the Ombilin oil shale may 

indicate bottom water with no oxygen (anoxic), an abundance of sulfur, and 

light being able to penetrate into this zone. This confirms the interpretation 

reported by Koeseomadinata and Matasak [4] that the Sangkarewang Formation 

was deposited under euxinic conditions. 

6 Conclusions 

The organic matter of the Ombilin oil shale is composed mostly from 

lamalginite with minor amounts of vitrinite and resinite. The hydrocarbon 

compounds identified in the oil shale are dominated by n-alkanes, pristane, and 

phytane. Hopanoid compounds and aryl isoprenoids were recognized in trace 

amounts. The organic matter may have been derived mostly from microalgae 

and bacteria, including green sulfur bacteria, which indicates a euxinic 

depositional environment. 
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